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Sorting on GPUs
Revisiting some algorithms from lecture 6:

Some not-so-good sorting approaches

Bitonic sort

QuickSort

Concurrent kernels and recursion
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Adapt to parallel algorithms
Many sorting algorithms are highly sequential

Suitable for parallel implementation?

• Data driven execution

• Data independent execution
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Data driven execution
Computing pattern depends on data

Usually harder to parallellize!

Example: QuickSort.

49(93)49(93)



Information Coding / Computer Graphics, ISY, LiTH

Data independent execution
Known computing pattern

Easier to parallellize - always the same plan

Example: Bitonic sort
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Bubble sort
Loop through data, compare neighbors

Extremely sequential

Inefficient

Parallel version: Bubble sort with odd-even transposition method

Compare all items pairwise

Two phases, ”odd phase” and ”even phase” (shifted one step)
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Bubble sort, parallel version
Bubble sort with odd-even transposition method

Compare all items pairwise

Two phases, ”odd phase” and ”even phase” (shifted one step)

Fully sorted after n phases

Even phase

O(n2)

Odd phase
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Suitable for GPU?
Not as bad as it seems at first look:

• Data independent

• Excellent locality

• Pretty good possibilities to use shared memory (but with 
some costly transfers at edges between blocks). Thus close 

to optimal in global memory transfers.

• But certainly not optimal at very large sizes

”Better” algorithms don’t necessary beat this all that easily!
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Rank sort
Count number of items that are smaller

Easy to parallelize:

• One thread per item

• Loop through entire data

• Store in index decided from count of number of smaller 
items.
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Suitable for GPU?
Again, not as bad as it seems at first look:

• Data independent

• Excellent locality - especially good for broadcasting (e.g. 
constant memory). Also suitable for shared memory.

• Again, O(n2): Will grow at very large sizes

Two bad ones that are not quite as bad as they seem.

N parallel iterations may beat NlogN sequential ones!
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Bitonic sort
(As described in Kessler 2.3)

Bitonic set: Two monotonic parts in different direction.
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Bitonic sort
(According to Batcher:) Let a be a bitonic set with a maximum at 

k, consisting of two monotonic parts, one increasing, a- (from 
item 1 to k) and one decreasing, a+ (k+1 to n)

Then two new sets can be constructed as

a’ = min(a1, ak+1), min(a2, ak+2)…
a” = max(a1, ak+1), max(a2, ak+2)…

These two sets are also bitonic and max(a’) ≤ min(a”)!

a”
a’a- a+
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Bitonic sort by divide-and-
conquer

Bitonic sort works on a bitonic sequence: 
partially sorted

The parts must be sorted. Sort them by 
bitonic sort!
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Bitonic sort example

Bitonic sort of 
smaller parts

Reverse parts 
(bitonic merge)

Bitonic sort of main 
part

Reverse parts 
(bitonic merge)

59(93)59(93)



Information Coding / Computer Graphics, ISY, LiTH

Bigger example
The problem scales nicely, uniformly

More stages gives longer stages
(Image inspired by one from Wikipedia)
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Get those steps right
Step length

Step direction

Comparison direction

Calculated from stage number and stage 
length
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Code examples
Sequential

Recursive example

Iterative example
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Bitonic sort
• Data independent, no worst case

• Fast: O(n·log2n) (Why?)

• Good locality in some parts

but

• Big leaps in addressing for some parts
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What about those big leaps?
Small leaps: Can be computed within one block. 

Shared memory friendly.

Big leaps (>number of threads/block): No 
synchronization possible between blocks!

But we must synchronize!

-> multiple kernel runs!
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QuickSort
Very popular algorithm for sequential implementation

Choose pivot

Compare to pivot, form 
two subsets, repeat

Data driven, data dependent reorganization, non-uniform

Fancy name - nobody expect QuickSort to be nothing but optimal
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QuickSort is
Fast: O(n·logn) in typical cases

O(n2) in the worst case

Data driven, data dependent reorganization, non-uniform

Fancy name - nobody expects QuickSort to be nothing 
but optimal
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QuickSort on GPU
Initially ignored as impractical

CUDA implementations exist

Data driven approaches increasingly suitable as 
GPUs become more flexible
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Parallel QuickSort
Several stages to consider:

• Pivot selection. Usually just grab one.

• Comparisons

• Partitioning

• Concatenate result
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Pivot selection
If we could always pick a pivot that splits the data in half…

That would be greeat…
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but you can’t do that without sorting! (Or a 
histogram.) But how about a random one?

There is a worst case caused by bad pivots. Live with it!
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Comparisons
Easy to parallelize

One thread per comparison not unreasonable! 
(GPUs don’t have a problem with many threads!)

No problem!
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Partitioning
The big problem!

Sequential partitioning: Bad!

Parallel partitioning 1: Atomic fetch & increment. 
(GPUs have atomics!)

Parallel partitioning 2: Divide and conquer
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In-place sorting not feasible
Split to two list of same size as original. Massive 

number of threads!

Then we must pack to smaller size.

A B C D E F G H

A C D F H B E G
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Packing to smaller size not trivial
Data dependent

Use parallel prefix sum to create a look-up table for 
addressing. (Kessler 1.6.3)

Computes sum of all previous items.
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#1 #2 #3 #4 #5 #6 #7 #8

#1 #1+2 #3 #3+4 #5 #5+6 #7 #7+8

#1 #1+2 #3 #1..4 #5 #5+6 #7 #5..8

#1 #1+2 #3 #1..4 #5 #5+6 #7 #1..8

#1 0 #3 #1+2 #5 #1..4 #7 #1..6

#1 #1+2 #3 0 #5 #5+6 #7 #1..4

#1 #1+2 #3 #1..4 #5 #5+6 #7 0

#1 #1+2 #3 #1..4 #5 #5+6 #7 #1..8

Zero

Zero

Zero

0 #1 #1+2 #1..3 #1..4 #1..5 #1..6 #1..7

Zero

Parallel prefix sum
Similar to reduction but full output.
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3 0 8 9 4 18 2 23

3 9 8 0 4 5 2 18

3 9 8 18 4 5 2 0

3 9 8 18 4 5 2 30

0 3 9 17 18 22 23 25

Zero

Zero

Zero

Zero

3 6 8 1 4 1 2 5

3 9 8 9 4 5 2 7

3 9 8 18 4 5 2 12

3 9 8 18 4 5 2 30

Parallel prefix sum
Example
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0 0 1 1 0 3 1 3

0 1 1 0 0 0 1 3

0 1 1 3 0 0 1 0

0 1 1 3 0 0 1 4

0 0 1 2 3 3 3 4

Zero

Zero

Zero

Zero

0 1 1 1 0 0 1 0

0 1 1 2 0 0 1 1

0 1 1 3 0 0 1 1

0 1 1 3 0 0 1 4

For sorting: Binary parallel prefix sum

78(93)78(93)



Information Coding / Computer Graphics, ISY, LiTH

Parallel prefix sum on GPU
•  No reason to use few threads. Use as many as 

you have output items.

• Multiple kernel runs to adapt to problem size 
variation.

• As described above, non-coalesced. Pack 
intermediate values for coalescing. If using shared 

memory, risk of bank conflicts. [Capannini]
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See also Kessler Ch 2

Thus, QuickSort is not impossible, but more 
complex than before.

Note:

GPUs have Compare-And-Swap atomics!

GPUs favor massive numbers of threads. One 
thread per comparison is more than OK!

Implementations available. Example:

https://sourceforge.net/projects/cuda-quicksort/
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Recursion
GPUs can’t do recursion efficiently… or can they?

Since Kepler we have concurrent kernels

Not only a matter of launching kernels from CPU!

A kernel can spawn new kernels!

Do recursion by spawning new kernels!
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Concurrent kernels, Dynamic Parallelism

Less work for the CPU to manage the computation.
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Recursion can look like this:

Source: http://blogs.nvidia.com/blog/2012/09/12/how-tesla-k20-
speeds-up-quicksort-a-familiar-comp-sci-code/

But… does this really 
do a good job on 
partitioning?
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Advantages
• Less work for CPU

• Less synchronizing (from CPU side)

• Easier programming!

They claim it matters 
this much (but your 
milage will vary)
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Recursive CUDA kernels, a significant 
improvement
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Other non-trivial algorithms
FFT, Fast Fourier Transform

Distance transform

Fractal Brownian Motion
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Fast Fourier Transform
Based on a sequence of "butterflies"

Similarily to Bitonic sort, can be computed several stage 
in one run for the "smaller" stages
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Distance transform
Fast and simple version by Danielsson 1980: "Jump 

flooding"

Makes "jumps" of various length

Every "jump" 
need to be one 

kernel run!
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Fractal Brownian Motion
Used for e.g. realistic looking procedural terrains

Among other methods:

• Diamond-square

• Multi-pass Perlin noise
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Diamond-square algorithm

1) Midpoint from corners

2) Edge from corners and midpoints

Repeat to 
desired 

resolution
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Multi-pass Perlin noise
Theoretically slower than Diamond-square

BUT

can be computed by independent threads! One 
kernel run!

Single octave

Needs log N passes of 
different frequency
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Conclusion
Algorithms with dependency in computed data 

often need multiple kernel runs.

This is an extra cost!

Does it pay when the computational complexity is 
lower?
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That's all folks!
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