
Information Coding / Computer Graphics, ISY, LiTHInformation Coding / Computer Graphics, ISY, LiTH

Sorting on GPUs
Revisiting some algorithms from lecture 6:

Some not-so-good sorting approaches

Bitonic sort

QuickSort

Concurrent kernels and recursion

47(93)

47(93)

Information Coding / Computer Graphics, ISY, LiTH

Adapt to parallel algorithms
Many sorting algorithms are highly sequential

Suitable for parallel implementation?

• Data driven execution

• Data independent execution

48(93)48(93)

Information Coding / Computer Graphics, ISY, LiTH

Data driven execution
Computing pattern depends on data

Usually harder to parallellize!

Example: QuickSort.

49(93)49(93)

Information Coding / Computer Graphics, ISY, LiTH

Data independent execution
Known computing pattern

Easier to parallellize - always the same plan

Example: Bitonic sort

50(93)50(93)

Information Coding / Computer Graphics, ISY, LiTH

Bubble sort
Loop through data, compare neighbors

Extremely sequential

Inefficient

Parallel version: Bubble sort with odd-even transposition method

Compare all items pairwise

Two phases, ”odd phase” and ”even phase” (shifted one step)

51(93)51(93)

Information Coding / Computer Graphics, ISY, LiTH

Bubble sort, parallel version
Bubble sort with odd-even transposition method

Compare all items pairwise

Two phases, ”odd phase” and ”even phase” (shifted one step)

Fully sorted after n phases

Even phase

O(n2)

Odd phase

52(93)52(93)

Information Coding / Computer Graphics, ISY, LiTH

Suitable for GPU?
Not as bad as it seems at first look:

• Data independent

• Excellent locality

• Pretty good possibilities to use shared memory (but with
some costly transfers at edges between blocks). Thus close

to optimal in global memory transfers.

• But certainly not optimal at very large sizes

”Better” algorithms don’t necessary beat this all that easily!

53(93)53(93)

Information Coding / Computer Graphics, ISY, LiTH

Rank sort
Count number of items that are smaller

Easy to parallelize:

• One thread per item

• Loop through entire data

• Store in index decided from count of number of smaller
items.

54(93)54(93)

Information Coding / Computer Graphics, ISY, LiTH

Suitable for GPU?
Again, not as bad as it seems at first look:

• Data independent

• Excellent locality - especially good for broadcasting (e.g.
constant memory). Also suitable for shared memory.

• Again, O(n2): Will grow at very large sizes

Two bad ones that are not quite as bad as they seem.

N parallel iterations may beat NlogN sequential ones!

55(93)55(93)

Information Coding / Computer Graphics, ISY, LiTH

Bitonic sort
(As described in Kessler 2.3)

Bitonic set: Two monotonic parts in different direction.

1
4

7
8

11
12

14
13

10
9

6
5

3
2

56(93)56(93)

Information Coding / Computer Graphics, ISY, LiTH

Bitonic sort
(According to Batcher:) Let a be a bitonic set with a maximum at

k, consisting of two monotonic parts, one increasing, a- (from
item 1 to k) and one decreasing, a+ (k+1 to n)

Then two new sets can be constructed as

a’ = min(a1, ak+1), min(a2, ak+2)…
a” = max(a1, ak+1), max(a2, ak+2)…

These two sets are also bitonic and max(a’) ≤ min(a”)!

a”
a’a- a+

57(93)57(93)

Information Coding / Computer Graphics, ISY, LiTH

Bitonic sort by divide-and-
conquer

Bitonic sort works on a bitonic sequence:
partially sorted

The parts must be sorted. Sort them by
bitonic sort!

58(93)58(93)

Information Coding / Computer Graphics, ISY, LiTH

7
1
8
3
5
6
2
4

1
7
8
3
5
6
4
2

1
3
8
7
5
6
4
2

1
3
7
8
6
5
4
2

1
3
4
2
6
5
7
8

1
2
4
3
6
5
7
8

1
2
3
4
5
6
7
8

Bitonic sort example

Bitonic sort of
smaller parts

Reverse parts
(bitonic merge)

Bitonic sort of main
part

Reverse parts
(bitonic merge)

59(93)59(93)

Information Coding / Computer Graphics, ISY, LiTH

Bigger example
The problem scales nicely, uniformly

More stages gives longer stages
(Image inspired by one from Wikipedia)

60(93)60(93)

Information Coding / Computer Graphics, ISY, LiTH

15
12
1
3
16
9
13
8
10
6
7
5
14
4
2
11

12
15
3
1
9
16
13
8
6
10
7
5
4
14
11
2

3
1
12
15
13
16
9
8
6
5
7
10
11
14
4
2

1
3
12
15
16
13
9
8
5
6
7
10
14
11
4
2

1
3
9
8
16
13
12
15
14
11
7
10
5
6
4
2

1
3
9
8
12
13
16
15
14
11
7
10
5
6
4
2

1
3
8
9
12
13
15
16
14
11
10
7
6
5
4
2

1
3
8
7
6
5
4
2
14
11
10
9
12
13
15
16

1
3
4
2
6
5
8
7
12
11
10
9
14
13
15
16

1
2
4
3
6
5
8
7
10
9
12
11
14
13
15
16

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

61(93)61(93)

Information Coding / Computer Graphics, ISY, LiTH

Get those steps right
Step length

Step direction

Comparison direction

Calculated from stage number and stage
length

62(93)62(93)

Information Coding / Computer Graphics, ISY, LiTH

Code examples
Sequential

Recursive example

Iterative example

63(93)63(93)

Information Coding / Computer Graphics, ISY, LiTH

Bitonic sort
• Data independent, no worst case

• Fast: O(n·log2n) (Why?)

• Good locality in some parts

but

• Big leaps in addressing for some parts

64(93)64(93)

Information Coding / Computer Graphics, ISY, LiTH

What about those big leaps?
Small leaps: Can be computed within one block.

Shared memory friendly.

Big leaps (>number of threads/block): No
synchronization possible between blocks!

But we must synchronize!

-> multiple kernel runs!

65(93)65(93)

Information Coding / Computer Graphics, ISY, LiTH

QuickSort
Very popular algorithm for sequential implementation

Choose pivot

Compare to pivot, form
two subsets, repeat

Data driven, data dependent reorganization, non-uniform

Fancy name - nobody expect QuickSort to be nothing but optimal

66(93)66(93)

Information Coding / Computer Graphics, ISY, LiTH

QuickSort is
Fast: O(n·logn) in typical cases

O(n2) in the worst case

Data driven, data dependent reorganization, non-uniform

Fancy name - nobody expects QuickSort to be nothing
but optimal

67(93)67(93)

Information Coding / Computer Graphics, ISY, LiTH

QuickSort on GPU
Initially ignored as impractical

CUDA implementations exist

Data driven approaches increasingly suitable as
GPUs become more flexible

68(93)68(93)

Information Coding / Computer Graphics, ISY, LiTH

Parallel QuickSort
Several stages to consider:

• Pivot selection. Usually just grab one.

• Comparisons

• Partitioning

• Concatenate result

69(93)69(93)

Information Coding / Computer Graphics, ISY, LiTH

Pivot selection
If we could always pick a pivot that splits the data in half…

That would be greeat…

70(93)70(93)

Information Coding / Computer Graphics, ISY, LiTH

but you can’t do that without sorting! (Or a
histogram.) But how about a random one?

There is a worst case caused by bad pivots. Live with it!

71(93)71(93)

Information Coding / Computer Graphics, ISY, LiTH

Comparisons
Easy to parallelize

One thread per comparison not unreasonable!
(GPUs don’t have a problem with many threads!)

No problem!

72(93)72(93)

Information Coding / Computer Graphics, ISY, LiTH

Partitioning
The big problem!

Sequential partitioning: Bad!

Parallel partitioning 1: Atomic fetch & increment.
(GPUs have atomics!)

Parallel partitioning 2: Divide and conquer

73(93)73(93)

Information Coding / Computer Graphics, ISY, LiTH

In-place sorting not feasible
Split to two list of same size as original. Massive

number of threads!

Then we must pack to smaller size.

A B C D E F G H

A C D F H B E G

74(93)74(93)

Information Coding / Computer Graphics, ISY, LiTH

Packing to smaller size not trivial
Data dependent

Use parallel prefix sum to create a look-up table for
addressing. (Kessler 1.6.3)

Computes sum of all previous items.

75(93)75(93)

Information Coding / Computer Graphics, ISY, LiTH

#1 #2 #3 #4 #5 #6 #7 #8

#1 #1+2 #3 #3+4 #5 #5+6 #7 #7+8

#1 #1+2 #3 #1..4 #5 #5+6 #7 #5..8

#1 #1+2 #3 #1..4 #5 #5+6 #7 #1..8

#1 0 #3 #1+2 #5 #1..4 #7 #1..6

#1 #1+2 #3 0 #5 #5+6 #7 #1..4

#1 #1+2 #3 #1..4 #5 #5+6 #7 0

#1 #1+2 #3 #1..4 #5 #5+6 #7 #1..8

Zero

Zero

Zero

0 #1 #1+2 #1..3 #1..4 #1..5 #1..6 #1..7

Zero

Parallel prefix sum
Similar to reduction but full output.

76(93)76(93)

Information Coding / Computer Graphics, ISY, LiTH

3 0 8 9 4 18 2 23

3 9 8 0 4 5 2 18

3 9 8 18 4 5 2 0

3 9 8 18 4 5 2 30

0 3 9 17 18 22 23 25

Zero

Zero

Zero

Zero

3 6 8 1 4 1 2 5

3 9 8 9 4 5 2 7

3 9 8 18 4 5 2 12

3 9 8 18 4 5 2 30

Parallel prefix sum
Example

77(93)77(93)

Information Coding / Computer Graphics, ISY, LiTH

0 0 1 1 0 3 1 3

0 1 1 0 0 0 1 3

0 1 1 3 0 0 1 0

0 1 1 3 0 0 1 4

0 0 1 2 3 3 3 4

Zero

Zero

Zero

Zero

0 1 1 1 0 0 1 0

0 1 1 2 0 0 1 1

0 1 1 3 0 0 1 1

0 1 1 3 0 0 1 4

For sorting: Binary parallel prefix sum

78(93)78(93)

Information Coding / Computer Graphics, ISY, LiTH

Parallel prefix sum on GPU
• No reason to use few threads. Use as many as

you have output items.

• Multiple kernel runs to adapt to problem size
variation.

• As described above, non-coalesced. Pack
intermediate values for coalescing. If using shared

memory, risk of bank conflicts. [Capannini]

79(93)79(93)

Information Coding / Computer Graphics, ISY, LiTH

See also Kessler Ch 2

Thus, QuickSort is not impossible, but more
complex than before.

Note:

GPUs have Compare-And-Swap atomics!

GPUs favor massive numbers of threads. One
thread per comparison is more than OK!

Implementations available. Example:

https://sourceforge.net/projects/cuda-quicksort/

80(93)80(93)

Information Coding / Computer Graphics, ISY, LiTH

Recursion
GPUs can’t do recursion efficiently… or can they?

Since Kepler we have concurrent kernels

Not only a matter of launching kernels from CPU!

A kernel can spawn new kernels!

Do recursion by spawning new kernels!

81(93)81(93)

Information Coding / Computer Graphics, ISY, LiTH

Concurrent kernels, Dynamic Parallelism

Less work for the CPU to manage the computation.

82(93)82(93)

Information Coding / Computer Graphics, ISY, LiTH

Recursion can look like this:

Source: http://blogs.nvidia.com/blog/2012/09/12/how-tesla-k20-
speeds-up-quicksort-a-familiar-comp-sci-code/

But… does this really
do a good job on
partitioning?

83(93)83(93)

Information Coding / Computer Graphics, ISY, LiTH

Advantages
• Less work for CPU

• Less synchronizing (from CPU side)

• Easier programming!

They claim it matters
this much (but your
milage will vary)

84(93)84(93)

Information Coding / Computer Graphics, ISY, LiTH

Recursive CUDA kernels, a significant
improvement

85(93)85(93)

Information Coding / Computer Graphics, ISY, LiTH

Other non-trivial algorithms
FFT, Fast Fourier Transform

Distance transform

Fractal Brownian Motion

86(93)86(93)

Information Coding / Computer Graphics, ISY, LiTH

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0 0

0

0

0

0

0

0

0

0

1

2

3

4

5

6

7

0

0

0

0

0

2

4

6

0

0

0

0

0

2

4

6

0

0

0

4

0

0

0

4

0

0

0

4

0

0

0

4

0

8

4

12

2

10

6

14

1

9

5

13

3

11

7

15

stage 1 stage 2 stage 3 stage 4

Epoch

Fast Fourier Transform
Based on a sequence of "butterflies"

Similarily to Bitonic sort, can be computed several stage
in one run for the "smaller" stages

87(93)87(93)

Information Coding / Computer Graphics, ISY, LiTH

Distance transform
Fast and simple version by Danielsson 1980: "Jump

flooding"

Makes "jumps" of various length

Every "jump"
need to be one

kernel run!

88(93)88(93)

Information Coding / Computer Graphics, ISY, LiTH

Fractal Brownian Motion
Used for e.g. realistic looking procedural terrains

Among other methods:

• Diamond-square

• Multi-pass Perlin noise

89(93)89(93)

Information Coding / Computer Graphics, ISY, LiTH

Diamond-square algorithm

1) Midpoint from corners

2) Edge from corners and midpoints

Repeat to
desired

resolution

90(93)90(93)

Information Coding / Computer Graphics, ISY, LiTH

Multi-pass Perlin noise
Theoretically slower than Diamond-square

BUT

can be computed by independent threads! One
kernel run!

Single octave

Needs log N passes of
different frequency

91(93)91(93)

Information Coding / Computer Graphics, ISY, LiTH

Conclusion
Algorithms with dependency in computed data

often need multiple kernel runs.

This is an extra cost!

Does it pay when the computational complexity is
lower?

92(93)92(93)

Information Coding / Computer Graphics, ISY, LiTH

That's all folks!

93(93)93(93)

